Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spatial Division Multiplexing for High Capacity Optical Interconnects in Modular Data Centers

Not Accessible

Your library or personal account may give you access

Abstract

Modular design has recently emerged as an efficient solution to build large data center (DC) facilities. Modular DCs are based on stand-alone prefabricated modules (i.e., PODs) that can be easily installed and interconnected. PODs can generate a large amount of traffic and thus require an ultra-high-capacity interconnection network. However, current electronic and optical interconnect architectures applied to modular DCs may experience major scalability problems in terms of high energy consumption and cabling complexity. To address these problems, we investigate five optical interconnect architectures based on spatial division multiplexing (SDM), and for each architecture, we propose a resource allocation strategy. We also present an extensive comparison among the SDM architectures in terms of cost and performance (i.e., blocking probability and throughput), with the objective to find the architecture offering the best trade-off between cost and performance for given DC sizes and traffic load values. Our results demonstrate that, in small modular DCs with low traffic load, an architecture based only on SDM is the best option, while in medium DCs with medium traffic load, an architecture based on coupled SDM and flexgrid wavelength division multiplexing (WDM) with spectral flexibility is the best solution. Finally, for large DCs with high traffic load values, the best trade-off between cost and performance is achieved by an SDM architecture that is based on uncoupled SDM and flexgrid WDM.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Network Performance Trade-Off in Modular Data Centers With Optical Spatial Division Multiplexing

Li Yan, Matteo Fiorani, Ajmal Muhammad, Massimo Tornatore, Erik Agrell, and Lena Wosinska
J. Opt. Commun. Netw. 10(9) 796-808 (2018)

POTORI: A Passive Optical Top-of-Rack Interconnect Architecture for Data Centers

Yuxin Cheng, Matteo Fiorani, Rui Lin, Lena Wosinska, and Jiajia Chen
J. Opt. Commun. Netw. 9(5) 401-411 (2017)

Improving Performance of Spatially Joint-Switched Space Division Multiplexing Optical Networks via Spatial Group Sharing

Federico Pederzolli, Domenico Siracusa, Behnam Shariati, José Manuel Rivas-Moscoso, Elio Salvadori, and Ioannis Tomkos
J. Opt. Commun. Netw. 9(3) B1-B11 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved